3D Printing (Industrial Applications)

P. V. Madhusudhan Rao Mehra Chair Professor IIT Delhi

Indian Institute of Chemical Engineers
(Northern Regional Centre)
New Delhi
April 6, 2019

What is 3D Printing?

3D Printing refers to a class of manufacturing methods which quickly produce physical artifacts/objects from 3D models

Also known as (rapid prototyping, additive manufacturing or layered manufacturing)

3D Printing processes use layer by layer addition to build an object

3D Printing Equipment

Material Deposition Layer by Layer

Why is 3D Printing Relevant?

3D Printing does not require any mold as a precursor to manufacture

Multiple parts can be produced in one go

3D Printing has been used successfully to make parts of various sizes

Geometric complexity is not a limitation in 3D Printing

3D Printing Processes

Fused Deposition Modeling (FDM)

Rapid Prototyping

Fused Deposition Modeling (FDM)

Additive Manufacturing

Stereolithography (SLA)

Rapid Prototyping

Selective Laser Sintering (SLS)

Rapid Prototyping

Powder Jetting

Other Technologies

Many Others
☐ Laminated Object Manufacturing
☐ Direct Metal Laser Sintering
☐ Laser Engineered Net Shaping (LENS)
☐ Selective Laser Melting (SLM)
☐ Electron Beam Melting (EBM)

New 3D Printing Technologies

Continuous Liquid Interface Production (CLIP) invented by Dr Joseph DeSimone, Professor of Chemical Engineering UNC Chapel Hill and NCSU

Applications

Touch and Feel

Form, Fit and Function

Functional Testing

Patterns for Casting

Patterns for Casting

Direct Tooling

Reverse Engineering

3D Printing can make parts in Biocompatible materials

Scaffolds by 3D Printing

Materials Options for 3D Printing

Metallic materials – Plain Carbon Steel, Tool Steel, Stainless steel, Aluminium, Copper, Titanium, Bronze, Nickel Alumides

Polymers and Polymeric Composites - ABS, Nylon (Polyamide), Polycarbonate, PP, Epoxies, Glass filled polyamide, Windform, Polystyrene, Polyester, Polyphenylesulfone

Others - Sand, Ceramics, Elastomers, Tungsten, Wax, Starch, Plaster

Bio Compatible Materials - Polycaprolactone (PCL), polypropylene-tricalcium phosphate, (PP-TCP), PCL-hydroxyapatite (HA), polyetheretherketone-hydroxyapatite, (PEEK-HA), tetracalcium phosphate (TTCP), beta – tricalcium phosphate (TCP), Polymethyl methacrylate (PMMA)

More Applications

Recent Applications

3D Printed Super Car

3D Printing

Jet Engine (GE)

3D printed tail light cover (Audi)

A forming die created with EBAM technology

3D Printing on Truck (Amazon)

3D Printed Heart

3D Printed Bionic Eye

3D-Printed Braces for Disabaled Dog

3D-Printed Braces for Disabaled Dog

3D Printed Food

3D-Printing on Space Station

Drug Delivery

3D Printed Garments

Design of New Functionally Graded materials

3D Printed Building (China)

3D Printed Human Ear

3D Printing of Flexible Electronics

3Doodler

Design & Realization of Tactile Diagrams

Tactile Diagrams (Thermoforming)

Tactile Diagrams

Thermoforming with 3D printed Molds

Tactile Diagrams

3D Printing Processes

Material Extrusion

Powder Bed Fusion

Material Jetting

Binder Jetting

Directed Energy Deposition

Vat Photopolymerisation

Sheet Lamination

Classification of 3D Printing Processes