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 New Innovative Methods for Characterising Heavy Qils

o Conclusions & Takeaway Message



Heavy Qil Upgrading Challenges

Impact on Fixed Bed and Ebullated Bed
Residue Upgrading Units
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Challenge #1: Make more cleaner transportation fuels
by higher conversion of heavier Residue
and with lower emissions of greenhouse gases

3 Hard Truths

1. Increasing demand for Energy!

2. Days of Easy Qil are over!

3. CO, constrained world is here!




Challenge #2: Balance conversion, deactivation rate, cycle-length,
(un)planned shut-downs, turnaround time and
schedule, product quality, blending economics, etc.
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Challenge #3: Maintain “operability” in Residue Upgrading while

higher conversion of heavier oil brings increased
fouling of downstream hardware and products
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Customising catalysts for heavier oil processing in Fixed Bed Resid
(ARDS/RDS/VRDS) Units
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Feed blend
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Bottoms H., Selectivity of active sites
to help keep Asphaltenes in solution)

360 °C* FCC Feed
CR < 5wt.%

Ni+V < 15 ppmw
S<0.5wt.%




Customised Catalyst — “Bringing together” of Heavier Oil feedstock &
Residue Upgrading Process
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The More Complex Chemistry of Heavy Oil Upgrading
compared to Ulira Low Sulfur Diesel




Overview of the Shell Pernis Hycon unit reactor section
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EOR Catalyst Stability performance advantage of customised catalyst
(Catalyst C) measured through using catboxes loaded in commercial unit

Catalyst B not suitable for a 22 month cycle
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Ebullated Bed Operators adjust severity for various feeds to
maintain low sediment/fouling rates and a stable operation
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Characterising Heavy Qil is no simple task because of Asphaltenes

Heavy Oil consists of ~10¢ molecules held together in a SARA matrix

The relative distribution of the SARA matrix species varies widely with crude type

Asphaltenes are the most complex & least characterised of all the heavy ol
macromolecules given their tendency to self-associate & flocculate during reaction

In Resid upgrading operation the delicate solute (asphaltene) / solvent (aromatic oil)
ARA compaitibility balance has to be maintained to avoid sediment-induced fouling

Wt.% Ni/ppmw V/ppmw S/wt.%

add A = Asphaltenes (Solute) S. American 38 114 3.9
a RRRa P Crude
a RAARa s R=Resins (Dispersant Pitch 100 100 300 5.4
a RAARa _ . 5 . .
a RRRa a = aromatics (Solvent)
0 a 7z 0 0 48

= saturates (Non-solvent)

40 110 260 5.7

A 25 230 740 6.5




So what exactly are Asphaltenes 22

o Asphaltenes are defined as the toluene soluble fraction that precipitates

when a large excess of n-heptane or pentane is added to oil.
[Heavy Oil Characterisation, Irv Wiehe, Soluble Solutions]

o They represent the least soluble fraction in Heavy Oil

(538 °C+)
e High in concentration of heteroatoms: S, N, O and Metals
o Molecular weight around 700-1000 g/mol; photo couniesy of

association increases molecular weight to 2000-5000 g/mol

o Molecular sizes ranging form 30-100 A.

Associated molecular structures 500 A E RGRG

a a
e Asphaltenes are colloidially dispersed in the SARA matrix a RAARa
characterising Heavy Ol a RAARa

a RRRa

o Asphaltene structure becomes more condensed aaa

(lower H/C ratio) with increasing bottoms conversion level












Atmospheric Residue feeds properties without advanced analysis

FEED A-1 FEED A-2 VARIATION
Density @ 15 °C 0.9808 0.9819 0.0011 g/ml
H (wt.%) 11.02 11.02 0 %
C (wt.%) 84.04 84.07 0 %
N (wt.%) 0.267 0.260 -3 %
S (wt.%) 4.536 4.575 0.9 %
Ni (ppmw) 21 20 -3 %
V (ppmw) 65 70 7 %
Metals (ppmw) 85 90 6 %
MCR (vt 120 12, 0.8 %
1000 F+ (wt.%) <513 498" 3.0 %

C> asph (wt.% 6.0 7 . 557 ~ =91 % .7

Not consistent with increased heaviness of current feed:
incorrect characterisation technique?



In USLD applications, GC*GC helped unravel the chemistry at
molecular level

Contemporary GCxGC-SCD chromatogram of a LCO-HAGO mixture
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For Residue Upgrading — Fourier Transform lon Cyclotron Resonance
Mass Spectroscopy represents a 1+ step in the same direction

‘ FTICR-MS

Peak Mol.
No. |~ Weight |~
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Fourier Transform lon C?'clotron Resonance-Mass Spectrometry can be
used to qualitatively follow Residue Upgrading reactions

a A/ Naphthalene

Phenathrene

* Py rene

Benzo[e]py rene

t @ ~
Dibenzo[e,ghi]perylene | O | O

Coke formation Asphaltene conversion

/Benzo[ghl]pewlene

o Ability to look at individual molecules in Residue feedstocks (4000-8000 species per sample)
e Leads to improved understanding as to which catalysts work on which molecules
o Gives a clearer picture of how the molecules change during the Residue Upgrading process



S1 Species are the most difficult Sulphur molecules to convert
Example of S1 molecule in diesel which can be found in the front end of an AR fraction
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New feed has more and heavier S1 species



Examples of using FTICR-MS to distinguish different families of
compounds present in AR & track their respective conversion rates
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Outﬁut charting removal of S1 Molecules in each stage as a function of
Carbon & Hydrogen content
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Using data from Molecular based Characterisation techniques such as
FT-ICR MS contributes to new generation catalyst development
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Using Innovative Catalyst Technology
to Overcome Processibility Barriers
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Takeaway Message

Meeting the future Heavy Oil upgrading challenge in
your Residue Upgrading unit starts with broader

Feed Characterisation as part of making the right
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