

Biotechnological Interventions for CO₂ Capture and Utilization

Dr. S. K. Puri
Centre Coordinator and Chief General Manager
(Bio-Energy Research Centre)
IndianOil R&D Center, Faridabad-India

LKMT WORKSHOP 15th -16th Nov., 2019

Outline

- Background
- CO2 capture and Utilization
- Enzyme assisted CO₂ capture
- CO₂ utilization thru Bio-technological interventions
 - Heterotrophic Microalgae based conversion
 - Electrobiocatalytic Conversion
- Conclusions

Background

Week beginning on October 27, 2019: 409.32 ppm

Weekly value from 1 year ago: 406.43 ppm

Weekly value from 10 years ago: 385.06 ppm

Global CO₂ concentration Status

Global greenhouse gas emission levels

Indian contributing about 3 GtCO2 e GHG Emissions

NDC contributions and the emissions gap

Source: Nationally Determined Contribution (NDC) targets for 2030 :UN Emission Gap Report 2018

Background

Most of India's Emissions Come from the Energy Sector

India 4th Highest Carbon Dioxide Emitter, Emissions May Grow by 6.3 %

In India, emissions are expected to grow by a solid 6.3 per cent in 2018, pushed by strong economic growth of around 8 per cent per year.

Source: GHG Platform India.

- Massive CO₂ accumulation result in climate change
- India promises a 33-35% reduction in emissions intensity by 2030, compared to 2005 levels*.

*https://www.telegraphindia.com/india/india-pledges-33-35-cut-in-carbon-intensity-by-2030/cid/1433584

Technological Opportunities
CO₂ CAPTURE & UTILIZATION

CO₂ Capture & Utilization

CO₂ Capture

 Involves process of separation of CO₂ from industrial and energy related sources

CO₂ Utilization

 It is the industrial process aimed to accelerate the utilization of CO₂ akin to process of producing various substances in nature from CO₂ that are consumed by humans and animals

CO₂ capture

Common industrial practices

- Amine scrubbing is commonly used process for CO₂ capture.
- Amine based carbon capture have many challenges:
 - High cost due to High energy requirement for solvent Regeneration
 - Low stability
 - Corrosive
- To overcome such limitations enzymatic CO₂ capture is a viable solution
- Enzyme (Carbonic anhydrase, CA) is used as a catalyst to enhance the CO₂ absorption in amine/carbonate solution and for low temperature CO₂ desorption

Enzymatic CO₂ capture

- Carbonic Anhydrase (CA) enzyme: Fastest natural enzyme
- Accelerator for CO_2 capture (TON = 10^6 /second)
- CA obtained from thermostable microbes: Stable in industrial Extreme conditions (P, T, Salinity)

Catalyses CO₂ hydration reactions

$$CO_2 + H_2O \overset{CA}{\leftrightarrow} HCO_3^- + H^+$$

CO₂ Capture of CA is 4000 times higher than that of MEA with energy consumption 7 times less*

*Source: Journal of Membrane Science, 2015, 494, 196-204 **CO2 Solution**

Active metallic site can be synthetically mimicked

Mechanism of CO₂ capture by CA

 In amine-based chemical CO₂ gas scrubbing processes bicarbonate formation is the rate determining step of the reactive absorption of CO₂ for amines and alkali carbonates, which leads to slower reaction and low CO₂ uptake.

$$R_3N + H_2O + CO2 \leftrightarrow R_3NH^+ + HCO_3^-$$
 (Slowest)

 $R_3N + H_2O + CO2 \leftrightarrow R_3NH^+ + HCO_3^-$ (Fastest)

CA accelerates the rate of

CA accelerates the rate of reaction of solubilising CO₂ to proton (H⁺) and carbonate (HCO₃⁻) and make the process faster resulting higher CO2 uptake..

Enzymatic CO₂ capture

Enzyme catalyses CO₂ capture with low levels of energy, in a benign absorbing solution

*Source: CO₂ Solution

Advantages

- Enzyme thermostable up to 110 °C with broad pH tolerance developed.
- Functionalized and reusable matrix systems were developed for immobilization of enzyme.
- ~2.1 times enhancement in CO₂ absorption
- Desorption at 90 °C in comparison to 120-140 °C in amine based system.
- Requires significantly less heat to release CO₂ than conventional amines
- High desorption efficiency
- Comparatively less corrosive (low temp) and low volatile
- Reduction in CO₂ absorber column size

Solvent System	Net Capacity (mol/L)
MEA (30%) @25% CO ₂	1.2 mol/l
Commercial @25% CO ₂	2.25 mol/l
Bio-Hybrid@25% CO ₂	4.54 mol/l

Opportunities: CO₂ Utilization or Sequestration Indian Oil The Power of Possibilities

CO₂ Utilization: Three pathways: Chemical, Biotechnology & as such use

CO₂ capture, utilization or sequestration

With declining fossil fuel reserves, CO₂ may become the best source of carbon

Aim: CO2 utilization to produce value added products

CO₂ Utilization

- It opens a window of possibility of recycling carbon through CO2 conversion
- Any marketable product obtained from CO₂ will have added value: the correct conversion of CO2 will generate a profit in a frame of availability of large volumes of CO₂
- The major pathways are:
 - Utilization of CO₂ as feedstock for chemicals/fuels:

The utilization of CO₂ (conversion into chemicals and other chemical applications) ranges around 200 Mt/y (Source: TCGR, Catalyst Group, 2012)

CO₂ to High value lipids & Bio-fuels through Biotechnological Interventions

Integrated process for CO₂ to value added products Indiano

LanzaTech Process

- Selectively produces Acetic acid (3-4%) from CO₂
- Proprietary anaerobe
- Extraction Uneconomical

Cheap carbon source as acetate available

DBT-IOC Process

- Microalgae (Thraustochytrids)
- Fast growing
- Biomass (70 gm/l/day)
- Acetate consumption
 ~135 gm/l/day
- 40-50 % of total oil suitable for biodiesel
- Omega-3 fatty acids (40-60 % of total oil)
- Easy harvesting

Requires carbon source

Heterotrophic MicroalgaeThe Potential of Thraustochytrids IndianOil

- Several Oleaginous microbes belonging to yeasts, microalgae and fungi can be exploited for heterotrophic lipid production.
- Thraustochytrids are marine heterotrophic microalgae which have several advantages
 - Fast growing (up to 14.2 g l⁻¹d⁻¹ CDW)
 - High oil content (up to 60-80 % of CDW, 10 g l⁻¹d⁻¹ oil production)
 - 40-50 % of total oil suitable for biodiesel production (<C18)
- The most distinguishing feature is significant co- production of high value co-products (Omega-3 fatty acids, 40-50 % of total oil, carotenoids 63 mg l⁻¹d⁻¹)
- Several strains of thraustochytrids isolated and developed at DBT IOC Centre

Heterotrophic production of lipids using Microalgae

- Advantages of Heterotrophic mode
 - Light independence
 - Relatively easy scale up for industrial use
 - High degrees of growth control
 - Reduced harvesting costs due to higher cell density.
- Challenge- Availability of commercially sustainable supply of carbon source for the fermentation which is major cost element
- Integration with synergistic waste streams rich in organic carbon could provide solution

Integrated process for CO₂ to value added products

Significance of the integrated process

- •Solution for utilization of green-house gases (e.g. CO₂) to food and fuels .
- Cheap and enough carbon source.
- Long term sustainability of the process- minimized use of acid & base
- Lipid for biodiesel production
- High value co products as nutraceuticals /pharmaceuticals

Lab set up of the integrated RAN process

10 kg/day CO2 to Lipids Integrated Pilot plant –World's First

CO₂ Sequestration Potential

Hydrogen

Commercialization/ Benefits

- Carbon recycling and commoditizing CO₂
- Economically feasible process due to production of valuable
 Omega fatty acids along with lipids (Oil)
- Commercialization of process shall provide energy access (competetive Bio-diesel) and affordable nutrition (DHA) for all.
- Shall lead to reduced carbon emissions, which in turn shall provide carbon credits

The Technology once proven at pilot scale has a potential to be a game changer technology for IOC & LanzaTech

Bio-electrochemical Synthesis

Concept

Bio-electrochemical system (BES) comprising of biofilm of specific microbes anchored at customized cathode surface i.e., biocathode, transforms CO₂ using minimum energy that can be supplied from renewable sources like solar

Electro-biocatalyzed Conversion of CO₂ to Bio-fuels

Advantages

- Sustainable process
- Carbon foot print reduced
- High conversion efficiency
 - Electricity to chemical commodities efficiency of electrobiocatalytic process is 80-90%.
 - Powering electrobiocatalytic system with electricity from solar cells could be more potent strategy
- Carbon losses avoided

Ethanol and Butanol production at IOC R&D Centre set up

Ongoing IOC-VITO research collaboration for conversion of CO₂ to alcohols

Electro-biocatalyzed Conversion of CO₂ to Fuels

- Rapid screening assay developed for isolating potential electro-active microbes
- Strain improvement through rigorous mutagenesis and genome shuffling
- Novel microbial blend for selective CO₂ transformation to alcohols developed
- Process established at 5L scale stack operation
 - 7.34 g/l/day product with C conversion efficiency @75%
 - Columbic efficiency @ >95%
 - Ethanol as dominant product (70% of total products)

SEM images of biofilm on electrode

Electrochemical data of CO2 reduction using different mutants

Conclusions

- GHG emissions issue : require clean technologies
- Enzyme assisted CO₂ capture may improve the existing amine based CO₂ capture process
- CCU is an attractive option for CO₂ transformation to valueadded chemicals
- Bio-technological process can play important role

The Whole Value Chain for Biological CO₂ Capture and Utilization

Thank You