

Oct 13, 2017

UOP Phenol 3G Technology
Low Cost Phenol Production with Improved Safety

Agenda: UOP Phenol 3G

- Highlight
- Market Segment Overview
- Process Overview
- Safety In Design
- Process Description and Improvements
 - -Chemical Reactions
 - Oxidation Section
 - Decomposition
 - Dehydrator
 - Direct Neutralization
 - Phenol Fractionation
- Summary

UOP Phenol 3G Technology

- Offers growth prospects and opportunity to vertical integrate petrochemical assets via phenol to bis-phenol A to polycarbonate production
- A lower OPEX, CAPEX and smaller footprint commercialized option
- Potential economic advantages:
 - Reduction of up to \$38 per ton of phenol in net cost of production (NCOP)
 - \$49MM increase in net present value (NPV) relative to competing technology
 - >17% steam reduction using novel phenol recovery fractionation technology
 - >13% reduction in capital expenses.
 - Up to 50% waste water reduction due to improved design
 - Higher phenol yield
 - Further improvements in feedstock efficiency possible with combined UOP Phenol 3G and UOP Q-Max cumene alkylation technology

Phenol Market Segment Overview

- Majority of capacity investment will take place in China, India and Asia Pacific
- New capacity to be integrated Cumene-Phenol units
- Asia has a very high degree of integration (90%+)

- World demand projected to grow at 2.7% CAGR though 2026 (~300-350 kMTA per year)
- 2 new Q-max and 1 new Phenol units licensed over the past 3 years; market tightening expected by 2020.

ource: InS © 2016 In

Source: © IHS Global Inc

UOP Phenol 3G Process

Phenol 3G vs. Competition - Net

	Competing Technology	UOP Phenol 3G
NPV, \$MM	BASE	BASE + 49
Cost of Production (NCOP), \$ per ton of Phenol	BASE	BASE -38
Feed Consumption, % tons of cumene/ ton of phenol	BASE	BASE - 0.5%
Utilities Cost, %	BASE	BASE – 17%

Basis: 300 kMTA phenol unit

UOP Phenol 3G Safety Features - Oxidation

- Pressure Relief Devices are designed for relief containment
- Utilizes active safety systems for temperature control
- Reduced CHP inventory
- Dedicated emergency coolers plus water injection system for mitigating CHP thermal decomposition runaway event
- Cumene transfer / deluge to reduce exotherm rate
- Redundant electrical grids in addition to steam drivers and/or standby diesel for emergency pumps

Safety In Phenol 3G Design

Concentration Section

- Design for ease of operation / reduced capital cost
- Virtually no inventory of hot CHP
- Integral cooling of CHP concentrate.
- 3G design does <u>not</u> have re-boiling of concentrated CHP.

Decomposer Section

- Non-boiling decomposer is more stable / easier to control
- Multiple independent acid injection points for better reliability
- High yields with no acetone recycle
- Less byproduct (acetol)/ lower phenol purification costs
- No distillation costs to produce acetone for recycle

Main Reactions

Oxidation Reactions

Oxidation Section

or Fractionation

Medium Pressure Oxidizers Cooler/Chiller Fresh Cumene → Spent Air Feed Compressed Air Decanter H₂O **Caustic Wash Drum** Oxidate to Fresh Weak **Spent Weak** Concentration Caustic Section Caustic Waste **Cumene from** Water Concentration and Hydrogenation

(to Waste Water Treatment)

Concentration Section

Decomposer Main Reactions

Dehydrator Main Reactions

Decomposition Section

Two-Stage Decomposition

Direct Neutralization System

Proprietary Neutralization System and Agent

- Eliminates reboiler fouling in downstream product fractionation
- Results in higher uptime/operating rate
- Lower capital cost
- Easy and safe to operate
- Lower maintenance cost

UOP Phenol 3G Summary

Significant technology advancements of the new UOP Phenol 3G process, we achieved:

- Reduction of NCOP by up to \$38/MT in phenol production
- Increase of up to \$49MM in NPV for a world class 300 KMTA unit

Through equipment metallurgy optimization, novel decomposer technology, and use of new and innovative fractionation technology for phenol fractionation, we achieved:

- Reduction in EEC (~13%)
- Reduction of steam consumption (at least 17%)
- Lower cumene/CHP inventory (60% lower in oxidation section)
- Reduced waste water (50%) are driven by improvements

The above benefits can be achieved while maintaining the **lowest** cumene consumption in the industry (lowest ton cumene/ton phenol) and outstanding safety/ reliability/ operability that the industry has come to know.

